Aris Kaksis 2019. year Riga Stradin's University

Bioorganic compounds Proteins

http://aris.gusc.lv/NutritionBioChem/38Olbalt10311Eng.doc

Six carbon -C-C-C-C-C- chain

L- α -lysine

Key terms. Bioorganic compounds L- α -amino acids, peptides, classification, building, functional groups. Optical isomers of L- α -amino acids. Opened, branched, cyclic and aromatic carbon chains.

Bioorganic amino acids are carbon-carbon C-C-C-C-C chains

Bioorganic amino acids form carbon atoms combinatorics 2,3,4,5,6 of carbon atoms chains linear, branched, cyclic and aromatic. Carbon atoms form the functional groups as are bound to atoms of oxygen C-O-, of nitrogen C-N< and of sulfur C-S-.

Amino acids carbon atoms chains -C-C-C-C-C- with branches

Five cyclic-C-C-C-C-:-C-C-chain plus phenol-OH cycle;-C-C-C-chain with-OH;-C-C-C-chain with-OH

Three-C-C-C- on chain--SH; Four-C-C-C-C- on chain CH₃-S-;-C-C-C- with -C=OO;-C-C-C-C- with -C=OO

Carbon atoms sequence linear, cyclic and aromatic chains of carbon atoms combinatorics 2, 3, 4, 5, 6 reflect

bioorganic amino acids molecular nano motors variation adaptation diversity for fitness to life processes circumstances in organism homeostasis (see 11.page combinations 1,9•10²⁴⁰ of 184 amino acids on polypeptide).

Six type functional groups in compounds of carbon atoms with oxygen C-O, nitrogen C-N and sulfur C-S.

- 1) Karbonic acids group -C=OOH is deprotonated H^++ -C=OO negative charge, because physiologic pH is 7,36;
- 2) Amino group $-\mathbf{NH}_2$ is protonated $-\mathbf{NH}_3^+$ positive charge cation because physiologic pH is 7,36;
- 3) Hydroxil group –**OH**;. 4) Sulfur hydro group -SH; Methionine CH₃-S-; 6) Aromatic planar non polar group.
- 5) Aliphatic non polar group;

21 L-a-Amino Acids proteins polypeptide

47 protolysis pK_a values and average pK_a isoelectric point IEP value

At physiologic pH=7, 36 ±0.01 carboxylic groups **R-COO**⁻ negative charged and amino groups **R-NH**₃⁺ positive charged. For example, glutamic acid pK_a reference to physiologic pH value smaller as physiologic pH: $pK_{aR-COO} = 4.25 < 7.36$, $pK_{aCOO} = 2.19 < 7.36$ and for amine is greater as physiologic pH: $9.67 = pK_{a-NH3+} > 7.36$.

pr _{aR-C00} –-	+.23<7.30, p	$M_{aCOO} - 2.1$	9<7.30 and	for annull is greater as physiologic pri. 9.07– pR_{a-NH3+} /.50.
Tab	le shown co	onstants pK_a	of four type	e parallel protolytic equilibria in each amino acid molecule:
acıd	\Leftrightarrow	base	$+\mathbf{H}^{*};$	Parallel protolytic equilibria number NpKa average isoelectric point
1. R-COO	H ⇔I	R-COO ⁻	$+\mathbf{H}^{+};$	and constant pK_a value IEP= pK_a is calculated as
2. R-NH ₃ ⁺	⇔F	$R-NH_2$	$+\mathbf{H}^{+};$	$IEP = pK_a = (\Sigma pK_{a R group} + pK_{a-NH3+} + pK_{a-COOH})/NpK_a$
3. Tyr-pher	nol- <mark>OH</mark> ⇔T	yr-phenol-	0^{-} + H ⁺ ,	In Optimald's dilution law $pH = pK_a - \log C$
4. Cys-SH	⇔C	ys- <mark>S</mark>	$+\mathbf{H}^+$	In Ostwala's allulon law: $pH = \frac{1}{2} = \frac{1}{2}$
Amino a	cid and pr	otein at is	oelectric p	oint value pH=IEP sum of total overall ion charge is zero
0acidi	ic charge (+)—————————————————————————————————————	zero " 0 " chai	ge IEP ————————————————————————————————————
-COOH &	$-\mathbf{NH_3}^+$ posit	tive charge		-COO [•] & -NH ₃ ⁺ charge is negative -COO [•] & -NH ₂
Amino Acid	рКа-С <mark>ОО</mark> Н	pKa- <mark>N</mark> H3+	pKa R group	Table5.3 Reginald H. Garrett, Charles M. Grishman,
Isoleucine	2.36	9.68		Biochemistry , University of Virginia 1995
Valine	2.32	9.62		Musslahin IED 7.26 is nontrol zone. O" showed melocule
Leucine	2.36	9.60		<i>Myoglobin</i> $IEP=7,50$ is neutral zero $,,0$ charged molecule,
Phenylalanine	1.83	9.13		as IEP=/,36 is equal physiologic pH _{blood} =/,36 IMBO.pdb
Cysteine	1.96	10.28	8.18	Albumin molecule E7G.pdb 7,32=IEP 7 fatty acids small (-) charge and
Methionine	2.28	9.21		7,40=IEP absent 7 fatty acids (+) positive at physiologic pH=7.36, but
Alanine	2.34	9.69		gamma <i>Globulin</i> IgG1 pdb molecule has positive (+) charge
Proline	1.99	10.96		$p_{\rm res}$ as at physical order $p_{\rm res}$ $p_{\rm re$
Glycine	2.34	9.60		as at physiologic $p_{11} = 7.50$ is greater $H_{12} = 7.51$.
Threonine	2.11	9.62		Iso electric point IEP=pK _a as well protolytic constant pK _a
Serine	2.21	9.15		calculates one of side residues R constants sum $\Sigma p K_{aRside residue}$
Tryptophan	2.38	9.39		plus pK _{aNterminusNH3+} and plus pK _{aCterminusCOO-}
Tyrosine	2.20	9.11	10.07	sum dividing with number NpKa of acidic groups in molecule
Histidine	1.82	9.17	6.00	$IEP=nK_{a}=(\Sigma nK_{a}R_{a})$
Aspartate	1.88	9.60	3.65	
Glutamate	2.19	9.67	4.25	Figure Separation of serum proteins by electrophoresis.
Asparagine	2.02	8.80		a) A sample is applied as a narrow line at the origin. After
Glutamine	2.17	9.13		electrophoresis at pH 8.8, the paper is dried and stained.
Lysine	2.18	8.95	10.53	b) A plot of color intensity of spots. γ <i>Globulin</i> slower <i>Albumin</i> .
Arginine	2.17	9.04	12.48	Proteins move this direction ← spot line sample origin at start
http://aris.gu	sc.lv/ChemF	iles/Albumi	n/1E7GpIStuc	IS.pdf !E7G albumin ; IgG1 immunoglobulin; 1MBO myoglobin;
	Desitive (() ala atma da	2	

Seleno cysteine is an L- α -amino acid found in a handful of proteins, including certain **peroxidases** and **reductases** where it participates in the catalysis of electron transfer reactions. As its name implies, a selenium Se atom replaces the sulfur S of its structural analog, cysteine. The p K_3 of seleno cysteine 5.2 is 3 units lower than that of cysteine 8.18. Since seleno cysteine is inserted into polypeptides during translation, it is commonly referred to as the "21st amino acid." However, like the other 20 genetically encoded amino acids, seleno cysteine is specified by a simple three-letter codon UGA (see class 16 week Nucleo proteins tRNA 62 codons).

Fisher projections for Santa Barbara University 3D L-α-amino acids

http://aris.gusc.lv/ChemFiles/MCDB108A/tw-amn/aasframes.htm Harper's Biochemistry Illustrated Table 3-1 on 15-16 page: projection of D-α-amino acids, which Not found in human organism proteins. D-q-amino acids

Fisher projections of L-α-amino acids

Physiologic pH=7.36.

CCW Counter Clock Wise Levos rotational $\mathbf{R} - \mathbf{C} = \mathbf{C} - \mathbf{C}$

Table The 20 common L-a-amino acids found in protein.

Protein-derived Amino Acids	Name Symbo		Show Fisher projection Structural Formula	
with aliphatic side chains left side 1	Glycine	Gly [G]	$\mathbf{H} = \begin{bmatrix} \mathbf{H} & \mathbf{H} \\ \mathbf{H} - \mathbf{N}^{+} \mathbf{H} & \mathbf{O} \\ \mathbf{H} & \mathbf{C}^{-} \mathbf{O}^{-} \\ \mathbf{H} \end{bmatrix}$	
2	Alanine	Ala [A]	$\mathbf{H}_{3}\mathbf{C} \stackrel{\mathbf{H}_{\mathbf{H}}^{H} \to \mathbf{H}}{\overset{\mathbf{H}_{\mathbf{H}}}}{\overset{\mathbf{H}_{\mathbf{H}}}{\overset{\mathbf{H}_{\mathbf{H}}}}{\overset{\mathbf{H}_{\mathbf{H}}}{\overset{\mathbf{H}_{\mathbf{H}}}}{\overset{\mathbf{H}_{\mathbf{H}}}{\overset{\mathbf{H}_{\mathbf{H}}}}{\overset{\mathbf{H}_{\mathbf{H}}}{\overset{\mathbf{H}}}}}}}}}}}}}}}$	
3	Valine	Val [V]	$ \begin{array}{c} H_{3}C \\ H_{$	
4	Leucine	Leu [L]	$\begin{array}{c} H_{3}C \\ H_{3}C \\ H_{3}C \\ H_{3}C \\ \end{array} \begin{array}{c} C \\ C \\ C \\ H \\ C \\ C$	
5	Isoleucine	Ile [I]	$H_{3}C - CH_{2} + H_{1} + H_$	
With side chains containing hydroxy	l (—OH) group	S		
left side			H tu	
6	Serine	Ser [S]	$\begin{array}{c} H = \mathbf{O} \\ CH_{2} = \begin{array}{c} H = \mathbf{N}^{T} + \mathbf{O} \\ CH_{2} = \begin{array}{c} C \\ C \\ H \end{array} \begin{array}{c} C \\ C \\ C \\ C \end{array} \begin{array}{c} C \\ C \\ C \end{array} \end{array} \begin{array}{c} C \\ C \\ C \end{array} \begin{array}{c} C \\ C \\ C \end{array} \end{array} \begin{array}{c} C \\ C \\ C \end{array} \begin{array}{c} C \\ C \\ C \end{array} \end{array} \begin{array}{c} C \\ C \\ C \end{array} \begin{array}{c} C \\ C \\ C \end{array} \end{array} $ \end{array}	
7	Threonine	Thr [T]	$\mathbf{H} = \mathbf{O} \qquad \mathbf{H} = \mathbf{O} \qquad $	
18	Tyrosine	Tyr [Y]	Shown below \downarrow .	
With side chains containing Sulfur at	toms (— <mark>S</mark> — ; –	- <mark>S</mark> H)		
left side				
8	Cysteine	Cys [C]	$\mathbf{CH}_{2} = \mathbf{CH}_{2} = \mathbf{C}_{1} = \mathbf{C}_{1$	
9	Methionine	Met [M]	$\mathbf{H}_{3}\mathbf{C} - \mathbf{S} = \mathbf{C}\mathbf{H}_{2} - \mathbf{C}\mathbf{H}_{2}$	

Physiologic pH=7.36.

	Name	Symbol	Show Fisher projection Structural Formula
With side chains containing Acidic (-	–COO ⁻) group:	s or their A	mides (—CO—NH ₂)
left side	Aspartate		
10	Aspartic acid	Asp [D]	
	salt		$\mathbf{U} = \mathbf{C} = \mathbf{C} = \mathbf{C} = \mathbf{C} = \mathbf{C}$
		Asn [N]	H ₊ H
11	Asparagine		$\begin{array}{c} \mathbf{O} \\ \mathbf{H} \\ $
			$H-N-C-CH_2-CH_2-C-O$
	Glutamate	Glu [E]	H ₁ +H
12	Glutamic acid		$\mathbf{O} \qquad \mathbf{H} = \mathbf{N} \mathbf{O} \qquad \mathbf{H} = \mathbf{N} \mathbf{O} \mathbf{O} = \mathbf{O}$
	salt		$\begin{array}{c} 0 - \mathbf{C} - \mathbf{C} \mathbf{H}_2 - \mathbf{C} \mathbf{H}_2 \\ \mathbf{H} \end{array}$
12		Gln [0]	
15	Glutamine		$\begin{array}{c} \mathbf{O} \\ \mathbf{H} \\ $
			$H-N-C-CH_2-CH_2-C-C-O$
With side chains containing Basic (—	-NH _n (+)) Grour	DS	
left side	n) n		H H + H
14	Arginin	Arg [R]	$H - N C \gg N - H$ $H - N + H O$
	8	-	$H-N-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2$
			H
15	T	Lys [K]	$H_{H-N^{+}H}$
15	Lysine		$H = N^{-1}$
			CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 H
		His [H]	+ H.
16	Histidine		$\mathbf{H} $ $\mathbf{N} $ $\mathbf{H}_{\mathbf{B}} $ $\mathbf{H} $
			$\mathbf{\dot{H}} = \mathbf{\dot{H}} - \dot{$
Containing Aromatic Rings 16	Histidine	His [H]	Shown above ↑
left side	Instance	Phe [F]	
17			$\beta \qquad \qquad$
17	Phenylalanine		$\langle \rangle - CH_2 - CH - C - 0$
			H H^+H 0
	Tyrosine	Tyr [Y]	
			$-\frac{\beta}{\beta}$
18			
			$\longrightarrow \qquad \qquad$
			$//$ CH_2 CH_2 CH_2
19	Truntonhan	$\mathbf{T}_{\mathbf{rr}}$ $[\mathbf{W}]$	βα
	пурюрнан	11p[w]	Ň
Imino Acid			Н
			N ⁺ H
	Proline	Pro [P]	
20			
			CH_2 $-CH_2$

Table The 20 common L-α-amino acids found in protein. .

:Hexa peptides from _2s1 to _2s7 of 20 amino acids http://aris.gusc.lv/NutritionBioChem/LW_protein_2s1.pdf

Protein synthesis Primary 1° structure <u>Terms</u>. Poly condensation reaction in ribosomes. Protein primary 1° polypeptide chain begin at N-terminal and finish at C-terminal. First amino acid free amino group in water medium protonate ${}^{+}H_{3}N$ -AA charge is positive and last amino acid free carboxylic group AA-COO⁻ at finish charge is deprotonate negative.

Calculate ΔH_r , ΔS_r , ΔG_r at standard conditions 298,15 K, ionic force 1 M, pH=7,36. Peptide synthesis poly condensation enzyme ribosome reaction of glycine Gly (G) amino acid using table data! Consider reaction is **exoergic** or **endoergic**! glycine + glycine \rightarrow glycil-glycine dipeptide synthesis

8	0						
Substance	$\Delta \mathrm{H}^{\circ}_{r}^{kJ}/_{\mathrm{mol}}$	ΔS°_{r} , $J/_{mol/K}$	$\operatorname{Gly}_{\operatorname{aqua}} + \operatorname{Gly}_{\operatorname{aqua}} + \mathbf{Q} + \Delta G \xrightarrow{\operatorname{Ribosome}} \operatorname{Gly} - \operatorname{Gly}_{\operatorname{aqua}} + \mathbf{H}_2\mathbf{O}$				
Gly _{aqua}	-554.56	76.45	1. $\Delta H_{\text{reaction}} = \Sigma \Delta H^{\circ}_{\text{products}} - \Sigma \Delta H^{\circ}_{\text{initial compounds}}$				
Gly- Gly _{aqua}	-790.99	-1	2. $\Delta S_{reaction} = \Sigma \Delta S^{\circ}_{products} - \Sigma \Delta S^{\circ}_{initial compounds}$				
H_2O	-285.83	69.9565	3. $\Delta G_{\text{reaction}} = \Delta H_{\text{reaction}} - T \cdot \Delta S_{\text{reaction}}$				
I=0 M	I=0,1 M	I=0.2 M	Ionic force 0 M, 0,1 M, 0,2; M formation $\Delta G^{\circ}_{H20} = -213,27 \text{ kJ}_{mol}$				
-180.13	-177.07.	-176.08	Gly _{aqua} formation; $\Delta G_r = \Sigma \Delta G^{\circ}_{\text{products}} - \Sigma \Delta G^{\circ}_{\text{initial compounds}}$				
-200.55	-195.65	-194.07	Gly- Gly _{aqua} ; ΔG_r =-200,5-213,275-(2*-180,13)=-53.515 ^{kJ} / _{mol}				
-213.275	-213.275	213.275	$H_2O;\Delta G_r = -195.65 - 213,275 - (2*-177.07) = -54,785k^{J/mol}$				
ΔG_r = -194,07-213,275 (2*-176,08)= -55,185 ^{kJ} / _{mol} endoergic							
$\Delta H_r = \Delta H^{\circ}_{Gly-Gly} + \Delta H^{\circ}_{H2O} - 2\Delta H^{\circ}_{Gly} = \dots + kJ_{mol} \text{ endothermic}$							
$=-790.99-285.83-(2*-554.56)=-1076.82+1109.12=32.3k^{kJ}/mol endothermick^{kJ}/mol en$							
$\Delta S_{dispersed} = -\Delta H_r / T = -32.3/298.15 = -108.335$							
$\Delta S_{r} = \Delta S^{\circ}_{Gly-Gly} + \Delta S^{\circ}_{H2O} - 2 \Delta S^{\circ}_{Gly} = 78 + 69.9565 - (2*108.2) = 147.9565 - 216.4 = -68.4435 \dots J_{mol/K}$							
3. $\Delta S_{total} = \Delta S_r + \Delta S_{dispersed} = -83,944-108,335 = -192,279$							
$\Delta G_r = \Delta H_r - T^* \Delta S_r = 32, 3-298, 15^* - 0,083944 = 32, 3+25,0279 = 57,328 kJ_{mol} \text{ endoergic} = 32, 3-298, 15^* - 0,083944 = 32, 3+25,0279 = 57,328 kJ_{mol} \text{ endoergic} = 32, 3-298, 15^* - 0,083944 = 32, 3+25,0279 = 57,328 kJ_{mol} \text{ endoergic} = 32, 3-298, 15^* - 0,083944 = 32, 3+25,0279 = 57,328 kJ_{mol} \text{ endoergic} = 32, 3-298, 15^* - 0,083944 = 32, 3+25,0279 = 57,328 kJ_{mol} \text{ endoergic} = 32, 3-298, 15^* - 0,083944 = 32, 3+25,0279 = 57,328 kJ_{mol} \text{ endoergic} = 32, 3-298, 15^* - 0,083944 = 32, 3+25,0279 = 57,328 kJ_{mol} \text{ endoergic} = 32, 3-298, 15^* - 0,083944 = 32, 3+25,0279 = 57,328 kJ_{mol} \text{ endoergic} = 32, 3-298, 15^* - 0,083944 = 32, 3+25,0279 = 57,328 kJ_{mol} \text{ endoergic} = 32, 3-298, 15^* - 0,083944 = 32, 3+25,0279 = 57,328 kJ_{mol} \text{ endoergic} = 32, 3-298, 15^* - 0,083944 = 32, 3+25,0279 = 57,328 kJ_{mol} \text{ endoergic} = 32, 3-298, 15^* - 0,083944 = 32, 3+25,0279 = 57,328 kJ_{mol} \text{ endoergic} = 32, 3-298, 15^* - 0,083944 = 32, 3+25,0279 = 57,328 kJ_{mol} \text{ endoergic} = 32, 3-298, 15^* - 0,083944 = 32, 3+25,0279 = 57,328 kJ_{mol} \text{ endoergic} = 32, 3-298, 15^* - 0,083944 = 32, 3+25,0279 = 57,328 kJ_{mol} \text{ endoergic} = 32, 3-298, 15^* - 0,083944 = 32, 3+25,0279 = 57,328 kJ_{mol} \text{ endoergic} = 32, 3-298, 15^* - 0,083944 = 32, 3+25,0279 = 57,328 kJ_{mol} \text{ endoergic} = 32, 3-29, 3-2$							
$T \cdot \Delta S_{total} = -192,279 \text{ J/K/}_{mol} \cdot 298,15 \text{ K} = -57,328 \text{kJ/}_{mol}$ bound in peptide bondT ΔS							
Total ions con	centration sum-	ionic force I in	measurement is ionic force I, mol / Liter				
1 M and unfavored, endoergic reaction $\Delta G_r = 57,328 \text{ kJ}_{mol}$.							
Chem. Phys. CRC, 2010, p.876,882,1220,1223							
Free ATP ⁴⁻ energy $\Delta G_{reac} = +57,3$ ^{KJ} / _{mol} transfer and							
accumulation in peptide bond at protein formation in ribosomes : gly							
0,0							

+ gly→gly-gly+ H₂O.
One mol of peptide bonds accumulates free energy
ΔG_{reac}=+57,3.....^{m.m.kJ}/_{mol}. Ribosome join in tandem peptide synthesis with ATP hydrolysis, that transfer free energy
-115,71 ^{kJ}/_{mol} and store ΔG_{reaction}=+57,3......^{kJ}/_{mol} in one mol of peptide bonds during the reaction.

ATP hydrolise is favored $\Delta G = -115,71 \text{ kJ}_{\text{mol}}$ and complex reaction summary <u>becomes favored</u>....., because $\Delta G_{\text{reaction}} < 0$ negative, favored..... $\Delta G_{\text{reaction}} = +57,3 - 115,71 = -58,4...$

1. Hexa peptide ribosomal synthesis-poly condensation from six amino acids Starting of N-terminus ${}^{+}H_{3}N$ -Val,Ser,Tyr, Cys, Gly, Lys-COO⁻ end with C-terminus.

N-terminus amino acid is Val1-Ser2-Tyr3-Cys4-Gly5-Lys6 is C-terminus amino acid.

Amino acid or protein molecules have four type acidic functional groups: -COOH neutral, - NH_3^+ positive charged, phenol-OH neutral, -SH neutral.

Functional acidic groups are involved in four parallel protolytic equilibriums:

At physiologic pH 7.36 four type groups exist prevailing as: negative charged **R-COO**⁻, positive charged amino groups $\mathbf{R}-\mathbf{NH}_{3}^{+}$,

neutral group of Tyrosine phenol-**OH** and Cysteine sulfur hydrogen **R--SH**.

Parallel net reaction equilibrium constant as well isoelectric point of functional groups for the same molecule $IEP=pK_{netConstant}$ constants sum average is:

$$IEP = pK_{netConstant} = \frac{\sum pKa_{Rgroup} + pKa_{Ntermin usNH_3^+} + pKa_{Ctermin usCOO^-}}{NpKa}$$

where NpKa is the acidic functional groups account number in one molecule.

Net Ostwald's dilution law: $[\mathbf{H}^+] = \sqrt{K_{netConstant} \bullet C} = 10^{-\mathbf{pH}} \mathbf{M}$ molarity. Hydrogen ion net production amount

expressed as pH value: $pH = \frac{\mathbf{pK}_{netConstant} - \log \mathbf{C}}{2}$

2. Calculate net reactions average Equilibria constant IEP=pK_{netConstant} hexa peptide

Val11 N-terminus-Ser2-Tyr3-Cys4-Gly5-C-terminus Lys6, net charge of molecule and pH of hexa peptide solution with concentration C=0.1 M!

3. Hexa peptide hydrolyse reaction governed by enzyme hydrolase

N-terminus amino acid is Val, Ser, Tyr, Cys, Gly, Lys is C-terminus amino acid by hydrolyse are separated to six free amino acids. In hydrolyse reaction separate six free amino acids and give the names for!

Theoretical concepts and key terms.

Structural stabilization of biomolecules as well proteins supported by five intermolecular forces:

1st hydrogen bonds; 2nd salt bridges; 3rd hydrophobic bonds; 4th coordinative bonds; 5th disulphide bonds.

1st Linus Pauling and Robert Corey in beginning 1939 assumed that in proteins conformations of greatest stability is because: (1) all atoms in a peptide bond lie in the same plane and

(2) <u>each amide group is hydrogen bond bonded with >N-H between</u>

the other peptide carbonyl group oxygen O=C<.

Secondary 2° structures on this bases are alpha α helixes and beta β sheets folded from primary 1° structure of polypeptide chains.

Hydrogen bond is established between oxygen O and nitrogen N atoms.

Hydrogen bond acceptor atoms are shown above and hydrogen bond donors below:

Task 1. Hydrogen bonds in secondary 2°, tertiary 3° and quaternary 4° structures

1) Write hydrogen bond formation between four water molecules:

2) Bond in protein chains with serine Ser-O-H group and asparagine carbonyl group O=C<NH₂.:

Ser-O-H + O=CNH₂-Asn => Ser-O-H....O=CNH₂-Asn

3) Bond in protein chains with serine Ser-O-H and asparagine amide hydrogen H-NHC=O-Asn:

$$\begin{array}{c} H \cdot N \\ Ser \\ O = C \\ H_2 \end{array} \xrightarrow{H} H \\ H - N \\ H \\ H_2 \\ H_2$$

4) Bond in protein chains with tyrosine Tyr-O-H group and glutamine carbonyl group $O=C<NH_2$: Tyr-O-H + $O=CNH_2$ -Gln => Tyr-O-H.... $O=CNH_2$ -Gln

5) Bond in protein chains with tyrosine Tyr-O-H and glutamine amide H-NHC=O-Gln:

$$\begin{array}{c} \overset{O=C}{\overset{I}{\leftarrow}} \mathsf{Tyr} \\ \overset{HC}{\overset{C}{\leftarrow}} \mathsf{C}_{\overset{I}{\leftarrow}} \\ \overset{H-N}{\overset{I}{\leftarrow}} \mathsf{H}_{2} \\ \overset{H-N}{\overset{I}{\leftarrow}} \mathsf{H}_{2} \\ \overset{I}{\overset{I}{\leftarrow}} \mathsf{H}_{2} \\ \overset{I$$

6) Hydrogen bond in protein chains with threonine and serine:

Secondary 2° structure $\alpha \& \beta$ formed by hydrogen bonds

N-нши О=С

 2^{nd} Salt bridge-ionic <u>bond</u> forms between negative charged carbonic acid and positive charged ammonium functional groups ----COO⁻...H₃⁺N---. Salt bridges are forming in polypeptide tertiary 3° and quaternary 4° protein structures to folding secondary structure units of alpha α helix or / and beta β sheet.

 3^{rd} **Hydrophobic** <u>bond</u> forms in water medium. Meeting two protein chains and touching residues of nonpolar amino acids, for example, phenylalanine and leucine or isoleucine, water molecules press together with force, which is ten times stronger as Van der Walls forces. Hydrophobic force influences cooling of heated gelatin water solution, which forms jelly, similar as cooked legs or hade of pig in soup, which after cooling turns into jelly or (*receklis* in Latvian), because water structure press together nonpolar amino acids under influence of hydrophobic force. Amino acids lies in adjacent chains of neighboring mutual contacting proteins (polypeptide). Hydrophobic bond forming amino acids are involved in tertiary 3° and quaternary 4° protein structure to folding secondary structure units of alpha α helix or/and beta β sheet.

Hydrophobic bond $(H_2O)_4 \rightarrow \Diamond \Diamond \leftarrow (H_2O)_4$ water structure

press together

<u>nonpolar</u> \diamond benzene residues of phenylalanine:

Task 3.

1) Write hydrophobic bond in protein chains with two phenylalanine benzene rings:

2) Hydrophobic bond in protein chains with isoleucine and phenylalanine residue:

3) Hydrophobic bond in protein chains with valine and leucine residue:

4) Hydrophobic bond in protein chains with alanine and valine residue:

$$\begin{array}{c|c} O = \begin{matrix} C & (\mathbf{H_2O})_4 & C = O \\ \downarrow & C = O \\ HC - CH_3 & + \begin{matrix} H_3C \\ H_3C \cdot C - CH \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} (\mathbf{H_2O})_4 \\ H_2O \end{pmatrix}_4 \end{matrix} Val \begin{matrix} N - H \\ N - H \end{matrix} = > \begin{array}{c} O = \begin{matrix} C \\ H_3C \\ HC - CH_3 \\ HC - CH_3 \\ HC \\ H - N \\ Ala \begin{pmatrix} H_2O \\ H_3C \\ H - N \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} H_2O \\ H_2O \\ H - N \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} H_2O \\ H_2O \\ H - N \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} H_2O \\ H_2O \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} H_2O \\ H_2O \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} H_2O \\ H_2O \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} H_2O \\ H_2O \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} H_2O \\ H_2O \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} H_2O \\ H_2O \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} H_2O \\ H_2O \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} H_2O \\ H_2O \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} H_2O \\ H_2O \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} H_2O \\ H_2O \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} H_2O \\ H_2O \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} H_2O \\ H_2O \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} H_2O \\ H_2O \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} H_2O \\ H_2O \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} H_2O \\ H_2O \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} H_2O \\ H_2O \\ H \end{matrix} Ala \begin{pmatrix} H_2O \\ H \\ H - N \\ I \end{matrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \end{pmatrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \end{pmatrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \end{pmatrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \end{pmatrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \end{pmatrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \end{pmatrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \end{pmatrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \end{pmatrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \end{pmatrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \end{pmatrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \end{pmatrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \end{pmatrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \end{pmatrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \end{pmatrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{matrix} Ala \end{pmatrix} Ala \begin{pmatrix} H_2O \\ H \\ H \end{pmatrix} Ala \begin{pmatrix} H_2O \\$$

5) Hydrophobic bond in protein chains with methionine and valine residue:

 4^{th} **Disulfide** <u>bond</u> forms under mild oxidation conditions between two protein chains joint adjacent strands cysteines (Cys[C]) amino acids oxidizing sulf-hydryl groups removing two hydrogen atoms. Disulfide bond forming cysteine residues are found in tertiary 3° and quaternary 4° protein structure to folding secondary 2° structure units of alpha α helix or / and beta β sheet.

5th Coordinative <u>bond</u> form complex makers (see <u>http://aris.gusc.lv/BioThermodynamics/CrystalloGraphy.pdf</u> and <u>http://aris.gusc.lv/BioThermodynamics/4KompleksiA.pdf</u>) which are metallic ions: iron(II) ions Fe^{2+} , iron(III) ions Fe^{3+} , calcium ions Ca^{2+} , magnesium ions Mg^{2+} also zinc ions Zn^{2+} or cooper ions Cu^{2+} and others, which are acceptors of donor oxygen and nitrogen unshared electron pairs, and, which (Fe^{2+} , Fe^{3+} , Ca^{2+} , Mg^{2+}) with coordination number 6 or (Zn^{2+} , Cu^{2+}) with coordination number 4 coordinates around metallic ion 6 or 4 oxygen **O** and nitrogen **N** atoms from enveloping proteins, stabilizing tertiary 3° and quaternary 4° structure of proteins. **Coordinative** <u>donor acceptor</u> <u>bond</u> calcium ion with carboxyl groups of Glu —COO⁺: \rightarrow $\Box Ca^{2+} \Box \leftarrow$:OOC— or iron(II) ion on center of hem $O=O: \rightarrow \Box Fe^{2+} \Box \leftarrow$:N,

H,C

H₂C

proximal

His93

ÇH,

CH.

His92

beta

His87

alpha

16 Fig. In human hemoglobin are build in four hems on which iron(II) atoms adsorbs four oxygen molecules, immunoglobulin body guard defense protein against infections and foreign bodies.

8 Proteins

Proteins are living nature multiform building materials, construction elements and machine tools of chemical reactions, which works like on conveyer gradually for maintenance of organism living functions. Amino acids are building blocks linking into protein chains.

Adult human body contains mass fractions 19% of proteins, which as polypeptide chains in polycondensation reactions forms 20 proteinogenic amino acids. Ten of 20 amino acids are essential amino acids, which human organism self can not synthesize, therefore essential amino acids have to uptake with nutrition. That easier remember names to recall of essential amino acids, is suggested PVT TIM HALL, what may find helpful for ten essential amino acids according its Latin name

The others ten amino acids are alanin, aspargin, aspartic acid, cystein, glutamine, glutamic acid, glycin, prolin and serine, what human organism can synthesize self.

Amino acid account on protein chains are very widely bounds from some tenth amino acids to 34000 amino acids on titin molecule. Scientists have calculated average statistic amino acids count on chain of human proteins 184 amino acids in molecule. Calculated from 20 amino acids combinations and variations number on polypeptide chain with account length 184 amino acids obtains number $1.9 \cdot 10^{240}$ which is $3 \cdot 10^{215}$ times greater as Avogadro $6 \cdot 10^{23}$ one molar number; 3. page: http://aris.gusc.lv/NutritionBioChem/32ProteinsC.pdf

Mapping the human genome DNA (deoxyribonucleic acid) in year 2001. shows pool encoded proteins number 31078, from what ascertain in action of human body 23371 and unknown 7707 proteins.

According structure proteins classify as fibrous (threadlike) and (globe-shaped) globular proteins. Fibrous proteins are water insoluble and from such proteins are made muscles, connective tissues, hares and those fiber proteins hold bones, assign framework mechanical persistence of bone material. Globulins, for example, lipoprotein, hemoglobin, immunoglobulin are globular water soluble proteins, which carry out water insoluble lipids emulgation and transport, maintains constant oxygen concentration $C_{02} = 6 \cdot 10^{-5}$ mol/liter arterial blood plasma, its pH=7,36 – in this water solution, defends the blood medium from undesirable proteins or foreign bodies and infections.

9.1 Peptide bond – primary structure

Proteins in cells synthesize ribosomes. Ribosomes are biocatalysts - combined enzymes complexes - biological sewingmachine of amino acids, which in polycondensation reaction with correct sequence of gene encoded one chain by peptide bonds bind in sequence each following of 20+1 different amino acids, forming dipeptides, tripeptides and polypeptides.

All 31078 encoded proteins synthesizes in ribosomes and first amino acid from messenger RNA molecule read methionine (Met[M]), with which start polycondensation reaction of polypeptide chain synthesis according on messenger RNA molecule encoded amino acid sequence. For example, linking to first amino acid methionine alanin produces dipeptide methioninalanin or in three letter abbreviation Met-Ala or in one letter symbol MA dipeptide and water:

In polycondensation reaction arises water molecule, therefore the hydrolyze is reverse reaction. Hydrolyze reaction is reaction with water,

methioninalanin

methionine (Met[M]) alanin (Ala[A])

in which the hydrolyze products of polypeptide-protein are free amino acids solution in water. Therefore cooking meet in soup hydrolyzes free amino acid solution in water, what calls about bouillon.

Tripeptide alaninserincystein forms in polycondensation of three amino acids alanin, serine and cystein:

Three letters are Ala-Ser-Cys and one letter symbol abbreviation is

alaninserincysteine

17 Fig. Peptide-bond –HN-CO-. Covalent bond binds two amino acids on polypeptide chain.

9.2 Secondary, tertiary, quaternary structure of Proteins

Five intermolecular forces strengthen folding of proteins in three different structure shapes, which calls one about secondary structure, tertiary structure and quaternary structure. In former chapter we consider primary structure of proteins, which forms polypeptide chains. Five intermolecular forces are:

- 1. and b) Hydrogen bonds,
- 2. and a) Salt bridge,
- 3. and c) Hydrophobic bonds,
- 4. and e) Coordinative bonds and
- **5.** and **d**) Disulphide bonds.

Fig.18 Stylistic picture of **disulfide** <u>bond</u> Cys—<u>S</u>—<u>S</u>—Cys, coordinative <u>donor acceptor</u> <u>bond</u> calcium ion with carboxyl groups —COO: $\rightarrow \Box Ca^{2+} \Box \leftarrow$:OOC— or iron(II) ion on center of <u>hem</u> $\rightarrow \Box Fe^{2+} \Box \leftarrow$, salt bridge Asp—COO-...⁺H₃N—Lys, hydrophobic <u>bond</u> (H₂O)₄ $\rightarrow \Diamond \Diamond \leftarrow$ (H₂O)₄ <u>water press together</u> <u>nonpolar</u> \Diamond residues of amino acids, hydrogen <u>bond</u> Asn=O...H—O—Ser.

1. Hydrogen <u>bond</u> forms if between electronegative chemical elements oxygen atoms = $\mathbf{O}...\mathbf{H}--\mathbf{O}-$ or nitrogen atoms = $\mathbf{N}--\mathbf{H}...\mathbf{N}$ = stand hydrogen atom, which covalently bind with one of atoms.

Oxygen or nitrogen atoms are hydrogen atom acceptors

Oxygen or nitrogen atoms are hydrogen atom donors.

Secondary structure 2°

Hydrogen <u>bond</u> fastens secondary structure of <u>alpha helixes</u>, <u>beta sheets</u> and <u>beta loops</u> for proteins.

19 Fig. Polypeptide chain secondary structure of proteins folds together with hydrogen bonds into the alpha helix (**a**) and into the beta sheet (**b**).

20 Fig. Salt bridge joint two chains of proteins with opposite charged negative carbonic acid –COO⁻ and positive charged ammonium $H_3^+N_{--}$ functional groups. 2.3 DiPhosphoGlicerate⁵⁻

-	•	Dif nosphooneer are
2	,3]	DPG [•] OOC
1	-	α lArg141—COO ⁻ H ₃ ⁺ N— α 2Val1,
2	-	α 2Arg141—COO ⁻ H ₃ *N— α 1Val1,
3	-	a1Arg141a2Lys127,
4	-	α2Arg141α1Lys127,
5	-	α2Arg141α1Asp126,
6	-	a1Arg141a2Asp126,
7	-	β2Asp94β2His146,
8	-	β1Asp94β1His146,
9	-	β2His146α1Lys40,
1()-	β1His146α2Lys40,
		B2 Asp Hist
	NE	FG1 HC3,
c	00	Argt_Asp a1 Lys+ NHt
	1	HC3 H9 C5
	NI	COO-

8,

His+

HC3 FG1

HC3 119

(b) 21 Fig. Venous blood hemoglobin has ten salt bridges, which joint four alpha1, alpha2, beta1 and beta2 protein chains with opposite charged negative carbonic acid -COO⁻ and positive charged ammonium H_3^+N — functional groups. 2,3DPG phosphate ions **PO**4²⁻ with ionic bond are bound to free end N terminal amino acid number one *valine* (Val1) *ammonium ions* H₃⁺N of beta1 and beta2 protein chains, which lie in cavity of entrance with amino phosphate net charge -2 for allosteric regulation of hemoglobin if oxygen concentration is below blood plasma concentration $[O_2] = 6 \cdot 10^{-5} \text{ M}.$

2. Salt bridge-ionic bond forms between negative charged carbonic acid and positive charged neighbor on protein chains ammonium functional groups $-COO^{-}...H_3^+N$

3. Disulfide bond forms under mild oxidation conditions between two protein chains joint opposite strand cystein (Cys[C]) amino acid oxidizing sulfhydryl groups

 $-Cvs + 2H^+ + 2e^ Cys \longrightarrow SH + HS \longrightarrow Cys \longrightarrow Cys \longrightarrow S-$

4. Hydrophobic bond forms in water medium. Meeting two protein chains and touching residues of nonpolar amino acids, for example, phenylalanine and leucine or isoleucine, water molecules press together with force, which is ten times stronger as Van der Walls forces. Hydrophobic force influences cooling of heated gelatin water solution, which forms jelly, similar as cooked legs or hade of pig in soup, which after cooling turns into jelly or (zilc in Latvian), because water press together nonpolar amino acids under influence of hydrophobic forces, which lies in adjacent chains of neighboring mutual contacting proteins (polypeptide). 5. Coordinative bond form complex makers (look A.Rauhvarger,

General Chemistry, vol.III, Complex compounds, part 12, p. 236) which are metallic ions: iron(II) ions Fe^{2+} , iron(III) ions Fe^{3+} , calcium ions Ca^{2+} , magnesium ions Mg^{2+} also zinc ions Zn^{2+} or cooper ions Cu^{2+} and others, which are acceptors of donor oxygen and nitrogen unshared electron pairs, and, which $(Fe^{2+}, Fe^{3+}, Ca^{2+}, Mg^{2+})$ with coordination number 6 or $(\mathbf{Zn}^{2+}, \mathbf{Cu}^{2+})$ with coordination number 4 coordinates around metallic ion 6 or 4 oxygen **O** and nitrogen **N** atoms from enveloping proteins, stabilizing tertiary and quaternary structure of proteins.

Tertiary structure 3° In tertiary structure folds secondary structure elements: alpha helixes, which resembles to tube of coiled protein chain, as well as beta sheets and beta loops, which provides parallel location tightly binding with hydrogen bonds of protein chains into beta sheets. In formation of tertiary structure take a place intermolecular interaction forces and some times all five: 1. Hydrogen bonds, 2. Salt bridges, 3. Disulfide bonds, 4. Hydrophobic bonds and 5.Coordinative bonds.

Quaternary structure 4° Quaternary structure is several protein separated chains aggregates, which bind together five intermolecular forces 1. Hydrogen bonds, 2. Salt bridges, 3. Disulfide bonds, 4. Hydrophobic bonds and 5.Coordinative bonds. For example:

In **hemoglobin** molecule four protein chains of tertiary structure alpha1, alpha2, beta1 and beta2 binds 1. Hydrogen bonds, 2. Salt bridges, 4. Hydrophobic bonds and 5.Coordinative bonds Fe^{2+} .

In **immunoglobulin** molecule two heavy and two light protein chains of tertiary structure bind :1. Hydrogen bonds, 2. Salt bridges, 3. Disulfide bonds, 4. Hydrophobic bonds.

Denaturation of proteins

Destruction of protein quaternary, tertiary and secondary structure is called as well **denaturation**. For example, egg white is transparent fluid viscous liquid, which natural appearance determines included proteins primary, secondary, tertiary and quaternary structure. Boiled eggs white are white congealed mass, because high temperature boiling breaks four intermolecular forces: 1. Hydrogen bonds, 2. Salt bridges, 4. Hydrophobic bonds and 5.Coordinative bonds.

3. Disulfide bonds demolish only at presence of reducing agents and present disulfide bonds in curdle can not break with heating only. Therefore heating curdle can obtain next cooking product cheese.

To prepare meal humans have learned denaturate proteins for nutrition, which perfect would be used in food containing amino acids, because organism absorbs just free amino acids. Therefore peoples in cooking meal apply the same methods as in chemistry labor methods: separation or grind into smaller peaces, heating and boiling, adding of acids, for example, acetic acid, citric acid or vine addition, in which always are present acids.

Mentioned denaturation actions with food applied proteins demolish quaternary, tertiary and secondary protein structure, but reaction of hydrolyze break the primary structure and release free amino acids, which absorb human organism from food prepared meals, that inside cells in ribosomes as new would synthesize for organism necessary proteins.

22 Fig. Protein denaturation from food. Cookery photographs: soup of beef tea, prepared meat, fishes, eggs and milk meals. On preparation of meals proteins are denaturate.