Hem pocket: oxy⇔deoxy; O₂⇔H⁺; oxygen⇔proton: Shuttle -Protocol Myoglobin is small monomeric 154 amino acids (human) molecule, which store oxygen molecules reserve in muscle cellss. Myoglobin is a small mono meric molecule that accumulates reserve of oxygen in the muscle tissues. Hemoglobin in red blood cells (erythrocytes) is concentration sensitive $O_2 <=> H^+$, HCO_3^- shuttle circulating from lungs with accumulated reserve of oxygen in exchange to equivalent Krebs cycle products H^+ , HCO_3^- amount. Circulating hemoglobin of blood plasma is in concentration sensitive equilibrium. Lungs saturates arterial blood up to concentration $[O_2]=6 \cdot 10^{-5}$ M releasing equivalent amount Krebs cycle products H^+ , HCO_3^- breathing out CO_2 and in tissues venous blood concentration decreases up to $[O_2]=0.426 \cdot 10^{-5}$ M. Cytosole concentration $[O_2]=0.23\cdot 10^{-5}$ M sensitive maintain myoglobin $O_2 \le H^+$, HCO_3 shuttle with oxygen binding fraction $\theta=87\%$ which replace in Krebs cycle consumed oxygen by equivalent Krebs products H^+ , HCO_3 amount. | First Name: _ | Surname: | | Group Nº | Medic | cal Chemistry | |---------------|-------------------|------------|-----------|------------|---------------| | "APPLICATIO | ON OF MOLECULAR D | YNAMICS AN | ND FREE E | ENERGY PEI | RTURBATION | | M | ETHODS TO METALL | OPORPHYRI | N-LIGANE |) SYSTEMS | II: | | | CO AND DIOXYG | EN BINDING | TO MYOC | GLOBIN" | | M.A. Lopez and P.A. Kollman, Protein Sci., 2 (1993) 1975 Contents of file LOPEZ.KIN: Kin.1 - Calpha trace of oxygen-bound myoglobin, with important features shown Kinemage 1 is a Calpha trace of sperm whale myoglobin-O₂, the starting structure for this free energy perturbation study simulating the 'mutation' of oxygen-bound to carbonmonoxy-bound protein. The **eight 8 alpha-helices** of the globin fold: (A B C D E F G H) are highlighted progressively by the color spectrum. ## 29 residues A 9≈-radius sphere around the iron(II) atom heme, which includes 29 residues in the heme and oxygen binding pocket, is the portion used in the calculation; these residues can be specifically highlighted, exept Glycine 29 inviseble amino acid AA. Check G and find Glycine order number on the chain using 8 alpha-helices. The groups which exhibit the largest free energy changes upon mutation can be distinguished (distal His64(E7), proximal His93(F8), Phe43(CD1), Phe46(CD4), Thr67(E10), Val68(E11), heme). View2 presents a similar perspective of the binding pocket to that in Figure 1a of the manuscript; this is best looked at in stereo with 'Calphas' and 'helices' turned off. Coordinates from Brookhaven Data Bank file: 1MBO.pdb ``` val1-leu2-ser3-glu4-gly5-glu6-trp7-gln8-leu9-val10-leu11-his12-val13- trp14-ala15-lys16-val17-glu18-ala19-asp20-val21-ala22-gly23-his24-gly25- gln26-asp27-ile28-leu29-ile30-arg31-leu32-phe33-lys34-ser35-his36-pro37- glu38-thr39-leu40-glu41-lys42-phe43-asp44-arg45-phe46-lys47-his48-leu49- lys50-thr51-glu52-ala53-glu54-met55-lys56-ala57-ser58-glu59-asp60-leu61- lys62-lys63-his64-gly65-val66-thr67-val68-leu69-thr70-ala71-leu72-gly73- ala74-ile75-leu76-lys77-lys78-lys79-gly80-his81-his82-glu83-ala84-glu85- leu86-lys87-pro88-leu89-ala90-gln91-ser92-his93-ala94-thr95-lys96-his97- lys98-ile99-pro100-ile101-lys102-tyr103-leu104-glu105-phe106-ile107- ser108-glu109-ala110-ile111-ile112-his113-val114-leu115-his116-ser117- arg118-his119-pro120-gly121-asp122-phe123-gly124-ala125-asp126-ala127- qln128-qly129-ala130-met131-asn132-lys133-ala134-leu135-qlu136-leu137- phe138-arg139-lys140-asp141-ile142-ala143-ala144-lys145-tyr146-lys147- glu148-leu149-gly150-tyr151-gln152-gly153- 10 20 30 40 50 60 1 VLSEGEWQLV LHVWAKVEAD VAGHGQDILI RLFKSHPETL EKFDRFKHLK TEAEMKASED 70 90 80 100 110 61 LKKHGVTVLT ALGAILKKKG HHEAELKPLA QSHATKHKIP IKYLEFISEA IIHVLHSRHP 150 121 130 140 160 170 180 ``` 121 GDFGADAQGA MNKALELFRK DIAAKYKELG YQG http://www.ncbi.nlm.nih.gov/protein/1MBO A | First Name: | Surname: | Group N° | _ Medical Chemistry | |---------------------------------|------------------------------|---------------------------|--| | Ferrochelatase (protoho | eme ferrolyase, E.C. 4.99.1 | 1.1) is the terminal enzy | me in heme biosynthesis and | | catalyzes the insertion of ferr | rous iron into protoporphyr | rin IX to form protohem | ne IX (heme). Due to the many | | critical roles of heme, synthe | sis of heme is required by | the vast majority of org | anisms. Despite significant | | investigation of both the mic | robial and eucaryotic enzy | me, details of metal che | lation remain unidentified. In | | this work we present the first | structure of the wild-type | human enzyme, a lead- | inhibited intermediate of the | | wild-type enzyme with boun | d metallated porphyrin mad | crocycle, the product bo | ound form of the enzyme, and a | | higher resolution model for t | he substrate-bound form of | f the E343K variant. Th | ese data paint a picture of an | | enzyme that undergoes signi- | ficant changes in secondary | y structure during the ca | talytic cycle. The role that | | these structural alterations pl | ay in overall catalysis and | potential protein-protein | n interactions with other | | proteins, as well as the possil | ble molecular basis for thes | se changes, is discussed | . The atomic details and | | structural rearrangements pre | esented herein significantly | advance our understan | ding of the substrate binding | | mode of ferrochelatase and r | eveal new conformational | changes in a structurally | γ conserved π helix that is | Heme is a cofactor found in essentially all aerobic organisms and a majority of anaerobes and facultative organisms. Most organisms that possess heme synthesize it themselves¹. With the exception of *Caenorhabditis elegans* and related helminthes², heme acquired via dietary sources is generally degraded to release free iron and is not utilized as a source of cellular heme³. While the traditional textbook roles for heme as a cofactor include hemo- and myoglobins, cytochromes and a handful of enzymes, considerable evidence has emerged that demonstrates a central role for heme in regulation of gene transcription^{4; 5}, as a gas sensor⁶, in the regulation of circadian rhythm⁷, during development⁸ and in RNAi processing⁹. Disordered heme metabolism can have profound developmental and health consequences^{10; 11}. predicted to have a central role in product release. Published online 2007 August 23. doi:10.1016/j.jmb.2007.08.040 The terminal step in heme biosynthesis is the insertion of ferrous iron into protoporphyrin IX to make protoheme IX¹². This step, catalyzed by the enzyme ferrochelatase, thus represents the convergence of two cellular pathways: the synthesis of the organic macrocycle protoporphyrin and the supply of ferrous iron¹³. These two pathways are tightly regulated since their substrates are both chemically reactive and potentially damaging to the cell¹⁴; ¹⁵. Ferrochelatase was the first enzyme activity to be identified with a recognized function as a biological metal chelator¹⁶; ¹⁷. While there was considerable questioning early on about the physiological need for such an enzyme, it is now clear that chelatases and metal chaperones are key elements of biological systems¹⁸; ¹⁹; ²⁰; ²¹; ²²; ²³. Ferrochelatases among all organisms are highly conserved at the level of tertiary structure although there is less than ten percent conservation at the level of amino acid sequence¹³. Crystal structures for the enzyme from *Bacillus subtilis*^{24; 25; 26; 27; 28}, *Saccharomyces cerevisiae*²⁹, and human^{30; 31; 32} have been published along with a number of structure/function studies^{33; 34; 35; 36; 37}. Based upon enzymatic studies that demonstrated strong competitive inhibition of ferrochelatase by *N*-alkyl porphyrins³⁸, Lavalee³⁹ proposed that *N*-alkyl porphyrins, because of their distorted macrocycle, may represent a transition state analog for the ferrochelatase reaction^{13; 40}. This proposal has been reviewed, discussed and refined, but has been generally accepted. Putative experimental validation for such a model came from studies with catalytic antibodies produced with *N*-methylmesoporphyrin (*N*-MeMP) as antigen. These catalytic antibodies bind porphyrin and in doing so distort the macrocycle so that divalent cations of the appropriate size are nonspecifically chelated into the porphyrin^{41; 42; 43}. A similar mode of action is envisioned for ferrochelation catalyzed by DNA- and RNAzymes^{44; 45}. It was, however, the series of structural studies on ferrochelatase from *B. subtilis* with bound *N*-MeMP that seemed to solidify this argument^{26; 28}. JMBFe-hem2OD207/JMBFe-hem2OD2.htm Human ferrochelatase (E.C. 4.99.1.1) is a homodimeric (86 kDa) mitochondrial membrane-associated enzyme that catalyzes the insertion of ferrous iron into protoporphyrin to form heme. We have determined the 2.0 A structure from the single wavelength iron anomalous scattering signal. The enzyme contains two NO-sensitive and uniquely coordinated [2Fe-2S] clusters. Its membrane association is mediated in part by a 12-residue hydrophobic lip that also forms the entrance to the active site pocket. The positioning of highly conserved residues in the active site in conjunction with previous biochemical studies support a catalytic model that may have significance in explaining the enzymatic defects that lead to the human inherited disease erythropoietic protoporphyria. Ferrochelatase (protoheme ferro-lyase, E.C. 4.99.1.1) catalyzes the terminal step in the heme biosynthetic pathway, the insertion of ferrous iron into protoporphyrin IX to generate protoheme IX (heme). In most organisms, ferrochelatase is a membrane-associated protein of low abundance¹, but a few bacterial ferrochelatases, including the enzyme from *Bacillus subtilis*² (BFc), the structure of which has been reported³, are soluble proteins. Overall, the sequence homology among known ferrochelatases is <10%. The eukaryotic enzymes possess a 30–50-residue extension at the C-terminus that is not present in most bacterial | First Name: | | Surname: | | Group N° | Medical | Chemistry | y | |------------------------------------|-------------------|--------------|--------------|-----------|---------|------------|----------| | ferrochelatases ¹ . The | function of this | extension | | | | omyces cei | revisiae | | or animal ferrochelata | se results in the | e loss of er | zvme activit | v^{4} . | | | | Although a catalytic model for ferrochelatase has been proposed based on a variety of experimental observations^{5, 6, 7, 8}, details of the enzymatic mechanism as well as the nature of the specific amino acids involved in catalysis still remain largely unknown. Because the human ferrochelatase (HFc) differs considerably from the bacterial ferrochelatases reported to date⁹, it is essential to characterize the human protein to understand the structural basis of the inherited disease erythropoietic protoporphyria (EPP)¹⁰. ## **Overall structure** The structure of the mature, processed form of HFc has been determined at 2.0 Å resolution from the iron anomalous scattering signal using data collected on a rotating anode. The crystallized HFc contains a R115L mutation that has no measurable effect on kinetic parameters. The human enzyme exists as a homodimer with a molecular mass of ~86 kDa. Each subunit (Fig. 1a) contains residues 65-423 (GenBank D00726) and one [2Fe-2S] cluster, while residues 1–62 represent a mitochondrial targeting sequence that is removed during proteolytic processing. Three cholate detergent molecules were found in the active site pocket and there are 580 water molecules associated with the dimer. The monomer has an elongated shape with dimensions of ~65 ×45 ×40 Å³ and contains 47.7% helix and 13.5% β-sheet. It is folded into two similar domains, each with a four-stranded parallel β -sheet flanked by an α -helix in a β - α - β motif that is reminiscent of the fold found in the periplasmic binding proteins. The first domain (residues 65–247) is composed of helices $\alpha 1 - \alpha 7$ and sheets $\beta 1 - \beta 4$. Helices $\alpha 2$ and $\alpha 3$ together with a loop (residues 95–104) form a section of the active site pocket (Fig. 1b). The second domain (residues 248-423) consists of helices $\alpha 8-\alpha 17$ and sheets β5-β8. Residues 302-311 of this domain comprise a short loop that forms another section of the active site pocket. The C-terminal extension (residues 390–423) forms a helix-turn-helix structure that serves as part of the binding motif for the [2Fe-2S] cluster. The topological similarity (Fig. 1c) between the domains suggests that they have arisen from a gene duplication event. However, significant differences exist between the two domains, including an N-terminal section (residues 80–130) that forms part of the active site pocket, and a Cterminal extension (residues 390-423) that is involved in coordination of the [2Fe-2S] cluster and in stabilization of the homodimer.